Effect of Gas Phase Chemical Reactions on Heat Transfer to a Charring Ablator

A. F. Mills* University of California, Los Angeles, Calif.

A. V. Gomez† TRW Systems Group, Houston, Texas

AND

G. STROUHAL! NASA Manned Spacecraft Center, Houston, Texas

Numerical solutions have been obtained for multicomponent stagnation-point flow with mass transfer of ablation products yielded by the phenolic-novalac Apollo command module heat shield. Equilibrium chemistry is assumed, and the range of pertinent parameters such as stagnation enthalpy and pressure, and pyrolysis gas and char elemental compositions, are typical of re-entry from a lunar mission. The results for the various components of the surface energy flux may be used for the evaluation of heat shield performance during Apollo reentry. Corresponding to each exact solution, inert injectant heat and mass transfer correlations were used to estimate the surface heat transfer q_u on the assumption that all the ablation product reactions take place at the ablator surface. The ratio $q_u(\text{exact})/q_u(\text{inert}) \equiv \emptyset$, termed the chemical energy recovery factor, is near unity for most cases of practical significance. The factor R essentially isolates the effects on surface heat transfer of gas-phase chemical reactions involving the ablation products. Furthermore, using our results, we are able to demonstrate an ablation prediction procedure which should prove suitable for many engineering purposes.

Nomenclature

species weighting constant В injection rate parameter, \dot{m}/g^* specific heat at constant pressure reference diffusion coefficient D F binary diffusion coefficient diffusion factor $_{H,h}^{g}$ conductance total and static enthalpies j k K diffusive mass flux thermal conductivity number of chemical elements Lewis number $\rho C_p \mathfrak{D}/k$ LeM molecular weight mass fraction m mass transfer rate ṁ absolute mass flux or number of chemical species npressure р conductive heat flux \hat{R}_N nose radius radius from axis of symmetry species production by chemical reaction ŕ R chemical energy recovery factor, q_u (exact numerical $solution)/q_u$ (inert injectant solution) coordinates along and normal to surface velocity components parallel and normal to surface

Presented as Paper 70-869 at the AIAA 5th Thermophysics Conference, Los Angeles, Calif., June 29-July 1, 1970; submitted December 29, 1970; revision received February 8, This study was conducted for NASA/MSC in support of E&DD Task E-45B.

u,v

* Assistant Professor of Engineering and Applied Science. Member AIAA.

Staff Engineer, Aeromechanics Laboratory. Member AIAA. Aerospace Engineer, Thermal Technology, Structures and Mechanics Division. Member AIAA.

mole fraction

boundary-layer thickness density ρ

dynamic viscosity

fraction of steady-state value of \dot{m}_c/\dot{m}_g

Subscripts

char and pyrolysis gas, respectively c,q

edge of boundary layer

mixture of edge gas composition but at the surface

temperature

heat and mass transfer, respectively h.m.

chemical species i, j

mono monatomic molecule of identical molecular weight

stagnation point

s,us surface and u surface

transferred state

chemical element (a) (α)

Superscripts

B,MC = binary and multicomponent, respectively

zero mass transfer

(t)total diffusive

Introduction

THE most refined method of predicting heat transfer to a L charring ablator presently available involves the coupling of a numerical solution procedure for the boundary-layer flow conservation equations to a finite-difference solution procedure for the in-depth response of the ablative material.1 Such an approach is not feasible for performing engineering calculations over a complete re-entry trajectory because of the cost and the inherent unreliability of such a complex computer program. Thus, current practice involves a finite-difference solution of the conservation equations governing the in-depth response of the ablator but uses simple correlation formulas to describe the convective heat transfer to the ablator surface. These formulas are in the form of standard correlations for high-temperature boundary-layer flows with correction factors to account for the reduction of heat transfer due to surface mass addition. The most extensive computations of these "blockage" factors are those of Anfimov² and Gomez et al.,3 but are restricted by the assumption that the injected gases do not react within the boundary layer. The objective of this study was to compute the data required to evaluate the effect on the surface heat transfer of gasphase chemical reactions involving the ablation products. The specific ablator considered is that used for the heat shield of the Apollo command module, i.e., a fiber-glass phenolic matrix containing an epoxy-novalac resin with phenolic microballoons and silica-fiber reinforcement; the aerothermochemical environment studied is typical of re-entry from a lunar mission. In addition, the data presented allow us to demonstrate a heat-transfer prediction procedure suitable for engineering calculations. A computer program based on this procedure is currently in production use at NASA/MSC for the evaluation of the Apollo heat shield performance.

The basic data were generated by obtaining numerical solutions for axisymmetric stagnation-point flow with surface mass addition. Multicomponent diffusion and a general equilibrium chemical environment are considered. Unequal diffusion coefficients are accounted for, with sufficient accuracy, through use of Kendall's bifurcation approximation for the binary diffusion coefficients. Thermal diffusion and diffusional conduction are assumed to have a negligible effect on the heat transfer. Absorption and emission of thermal radiation are ignored. The ranges of pertinent parameters considered are characteristic of re-entry from a lunar mission. The results presented here, in particular the various components of the surface energy flux, have direct engineering application. Of equal concern however is the development of an appropriate correlation procedure.

Most analyses of chemically reacting boundary-layer flows have been performed utilizing the simplifying assumption of unity effective Lewis numbers for all diffusing species. Numerous correlation procedures⁴⁻⁷ have been proposed in order to account for the effect of nonunity Lewis numbers on the surface heat transfer. Paucity of suitable data has precluded a comprehensive evaluation of the merits of the various procedures and, as a result, no single procedure is presently accepted as being satisfactory. Bartlett, Nicolet, and Howe⁸ correlated a heat-transfer conductance defined as the surface diffusive energy flux $k \partial T / \partial y|_s + \sum_{j_i,s} h_{i,s}$ divided by the enthalpy difference $(H_{\bullet} - h_{\bullet})$; the corresponding correlation of the enthalpy h_s is, of course, also required. An alternative procedure would be to provide separate correlations of the conduction component in the form $k\partial T/\partial y$, divided by $(H_{\bullet} - h_{\bullet \bullet})$ and the species diffusive fluxes $j_{i,\bullet}$ in the form of mass transfer conductances $g_{m,i}$. A correlation of h_s is again required to complete the surface energy balance. However, the mass transfer conductances are themselves of direct interest for various purposes.

In this work we have chosen to use yet another approach to the correlation of data for the surface heat transfer. Our rationale is as follows: ablation has essentially two effects on the boundary-layer flow, 1) a reduction of the surface heat conduction and species diffusive fluxes due to blowing, in a manner similar to that for inert foreign gas injection, and 2) heat release or absorption due to chemical reactions; e.g., there is the possibility of exothermic combustion involving the edge gases, or endothermic dissociation of product species such as CO_2 and H_2 . In the present application the dominant gas-phase ablation product reactions are usually the endothermic dissociations. For Le=1 there is the well-known result^{4,9} that the surface heat transfer is independent of the location of dissociation reactions within the boundary layer; i.e., they may be assumed to occur at the surface. Thus, we

suggest that the effect of ablation on heat transfer may be viewed as primarily due to blowing, with an injectant gas composition consistent with the assumptions that all the ablation product reactions take place at the surface. The additional effect of the precise location of the reactions within the boundary layer is then expected to be relatively minor and hence conveniently correlated for engineering purposes.

To isolate the effect of gas-phase chemical reactions the following procedure is followed. For boundary conditions identical to those of a particular exact numerical solution, inert injectant heat and mass transfer correlations³ are used in a calculation of the surface heat transfer, in which it is assumed that all the chemical reactions take place at the surface. The required injectant composition $(m_{i,ts}; i = 1,2,\ldots,n)$ is obtained by performing an open system equilibrium chemical state computation in which both the reactions of the pyrolysis gases and char surface with the freestream air are included. As an end result the ratio q_u (exact numerical solution)/ q_u (inert injectant solution) = \Re , termed the chemical energy recovery factor, is calculated. This parameter is a measure of the effect of gas-phase reactions on the surface heat transfer, but of course also reflects errors inherent in the empirical content of the inert injectant calculations.

Finally, this R factor suggests the basis for an engineering ablation prediction procedure. One can include an opensystem, surface chemical state computation at each time step of the finite-difference solution for the in-depth response of the ablator. Thus, the heat transfer to the ablator surface is calculated on the assumption that all the ablation product reactions take place at the surface, i.e., in a manner identical to that just described for q_u (inert injectant solution). Previously generated correlations of R for the specific ablator under consideration may then be incorporated to correct the inert injectant solution. Since R usually is quite near unity, the procedure has merit for general engineering purposes. A situation for which the procedure might not be appropriate is, for example, towards the end of re-entry where the heat shield could essentially burn, with a dominance of exothermic gas phase reactions.

Analysis

Numerical Solutions

A coordinate system is chosen such that distances measured along and normal to the surface are s and y respectively; the corresponding velocity components are u and v. For steady axisymmetric stagnation point boundary-layer flow, the governing conservation equations for a nonradiating, multicomponent, chemically reacting gas mixture are mass:

$$(\partial/\partial s)(\rho ur) + (\partial/\partial y)(\rho vr) = 0 \tag{1}$$

momentum:

$$\rho u \, \partial u/\partial s + \rho v \, \partial u/\partial y = \rho_e u_e \, du_e/ds + (\partial/\partial y)(\mu \, \partial u/\partial y) \quad (2)$$
 species:

$$\rho u \frac{\partial m_i}{\partial s} + \rho v \frac{\partial m_i}{\partial y} = \frac{\partial}{\partial y} (-j_i) + \dot{r}_i \quad i = 1, 2, \dots, n \quad (3)$$

total enthalpy:

$$\rho u \frac{\partial H}{\partial s} + \rho v \frac{\partial H}{\partial y} = \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} - \sum_{i} j_{i} h_{i} \right) + \frac{\partial}{\partial y} \left(u \mu \frac{\partial u}{\partial y} \right)$$
(4)

The Shvab-Zeldovich transformation is applied to the species conservation equations to yield conservation equations for

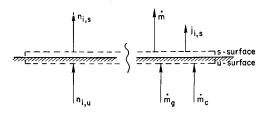


Fig. 1 Surface mass fluxes.

the chemical elements:

$$\rho u \frac{\partial m_{(\alpha)}}{\partial s} + \rho v \frac{\partial m_{(\alpha)}}{\partial y} = \frac{\partial}{\partial y} [-j_{(\alpha)}]; \quad (\alpha) = 1, 2, \dots, K \quad (5)$$

where

$$m_{(\alpha)} = \sum_{i=1}^{n} m_{(\alpha),i} m_i; \quad j_{(\alpha)} = \sum_{i=1}^{n} m_{(\alpha),i} j_i$$

The diffusion fluxes j_i are obtained from the Chapman-Enskog kinetic theory of gases. To uncouple the Stefan-Maxwell equations describing these fluxes, a bifurcation approximation $^{10-12}$ to the binary diffusion coefficients is introduced in the form

$$\mathfrak{D}_{ij} = \bar{D}(T,p)/F_i F_j \tag{6}$$

where $\bar{D}(T,p)$ is a reference binary diffusion coefficient and $F_i(T)$ is a property of the *i*th species, called a diffusion factor. For the present investigation it was adequate to take the F_i independent of temperature and employ the simple correlation of the form recommended by Kendall, ¹² namely

$$F_i \propto M_i^{0.461} \tag{7}$$

With these simplifications the diffusion flux j_i becomes

$$j_i = -(\rho \bar{D} \mu_2 / \mu_1 M) \left[\partial z_i / \partial y + (z_i - m_i) \partial \ln \mu_2 / \partial y \right]$$
 (8)

where

$$z_i = M_i x_i / F_i \mu_2;$$
 $\mu_1 = \sum_j x_j F_j$
 $\mu_2 = \sum_j M_j x_j / F_j;$ $M = \sum_j x_j M_j$

The stagnation-point velocity gradient $[du_e/ds]_0$ is obtained in the conventional manner by combining the Euler equation applied at the outer edge of the boundary layer with the Newtonian pressure distribution for stagnation point flow to yield

$$(du_e/ds)|_0 = (1/R_N)(2p_{e,0}/\rho_{e,0})^{1/2}$$
 (9)

where R_N is taken as 10 ft, a value appropriate for the Apollo command module. The boundary conditions appropriate to the problem are

$$y \to \infty$$
: $u \to u_e(s)$; $m_{(\alpha)} \to m_{(\alpha),e}$; $H \to H_0$ (10)

$$y = 0: \quad u = 0 \tag{11}$$

$$\dot{m} = \dot{m}_{g} + \dot{m}_{c} = \rho_{s} v_{s} \tag{12}$$

$$m_{(\alpha),t} \dot{m} = m_{(\alpha),s} \dot{m} + \sum_{i=1}^{n} m_{(\alpha),i} \dot{j}_{i,s}; \quad (\alpha) = 1,2,\ldots,K \quad (13)$$

where the boundary condition given by Eq. (13) has been cast in the form suggested by Spalding.¹⁸ Figure 1 illustrates the notation.

The viscosities and thermal conductivities of the pure components, and \bar{D} are computed in the manner recommended by Hirschfelder, Curtiss, and Bird.⁹ The Lennard-Jones interaction potential is assumed, and the required parameters are obtained from Svehla¹⁴ and Hochstim.¹⁵ The mixture viscosity is calculated following the method of Wilke, ¹⁶ and the mixture thermal conductivity according to

Mason and Saxena.¹⁷ The diffusion factors F_i are computed from Eq. (7); in addition, solutions have been obtained using more accurate values of F_i appropriate to the chemical system under consideration. The results obtained by the two methods show no significant differences. Thermodynamic properties from the JANAF tables¹⁸ and Duff-Bauer¹⁹ are used.

A NASA/MSC computer program, originally developed by the Aerotherm Corporation, is used. The numerical procedure is based on the method of weighted residuals with square-wave moment functions and spline interpolation functions for the primary dependent variables. Kendall demonstrated that three place accuracy could generally be obtained with seven spline segments. The resultant set of algebraic relations is solved by Newton-Raphson iteration using matrix inversion. The chemical state and required state derivatives were computed in a standard manner. Computer time for a set of 7 solutions is typically 5 min on a Univac 1108 machine.

Chemical Energy Recovery Factor &

For each exact numerical solution a corresponding inert injectant solution was obtained as follows. For identical values of $\dot{m}_{\varrho}, m_{(\alpha),\varrho}, m_{(\alpha),e}, T_{\varepsilon}$ and external flow parameters, an open system surface equilibrium chemical state computation²¹ was made. The required elemental constraints are provided by the set of elemental flux relations

$$m_{(\alpha)}, \dot{m} = m_{(\alpha),s}\dot{m} + \sum_{i=1}^{n} m_{(\alpha),i}j_{i,s}; \quad (\alpha) = 1,2,\ldots,K \quad (14)$$

where

$$j_{i,s} = g_{m,i}(m_{i,s} - m_{i,s}) \tag{15}$$

The mass transfer conductances $g_{m,i}$, and a suitable expression for the surface conductive heat flux q_s , were obtained from the inert injectant multicomponent mass and heat transfer correlations developed by Gomez et al., an amely

$$g_{m,i}^{MC}/g_{m,i}^* = a_m^{MC}B_h/[\exp(a_m^{MC}B_h) - 1]; \quad B_h = \dot{m}/g_h^* \quad (16)$$

where

$$a_m^{MC} = 1.125 \left(M_{\text{air}} \sum_{i=1}^n \frac{m_{i,ts}}{M_i} \right)^{2/3}; \quad m_{i,ts} = \frac{n_{i,s}}{\dot{m}} \quad (17)$$

$$q_{s}^{MC}/q_{s}^{*} = \prod_{i=1}^{n} \left[\frac{q_{s}^{B}(B_{h,i})}{q_{s}^{*}} \right]$$
 (18)

where

$$q_{s}^{B}/q_{s}^{*} = a_{h,i}B_{h,i}/[\exp(a_{h,i}B_{h,i}) - 1]$$
 (19)

$$a_{h,i} = 1.25 \left(\frac{M_{\text{air}}}{M_i}\right)_s^{0.4} \left(\frac{C_{p_i}}{C_{p_i,\text{mono}}}\right)_s^{0.3}; \quad B_{h,i} = \frac{n_{i,s}}{g_h^*}$$
 (20)

The exponential functional forms are suggested by Couette flow modeling of the boundary layer. The multicomponent combining rules, Eqs. (17) and (18), and the species weighting constants a_i are empirical. The product form of Eq. (18)

Table 1 Pyrolysis gas and char elemental mass fractions

		model I,	Model II, 100% coking		
Element	$m_{(\alpha),g}$	$m_{(\boldsymbol{lpha}),c}$	$m_{(\alpha),g}$	$m_{(\alpha)}$	
Hydrogen	0.093	0	0.131	0	
Carbon	0.547	0.511	0.361	0.614	
Nitrogen	0.019	0	0.027	0	
Oxygen	0.341	0.238	0.481	0.206	
Silicon	0	0.251	0	0.180	

was first suggested by Anfimov.² Consistent with the manner in which the mass transfer conductance correlations were developed, the composition $m_{i,\epsilon}$ in Eq. (15) was taken to be that of a gas mixture of freestream elemental composition in equilibrium at the surface temperature.

This chemical state computation yields the char removal rate m_c , the molecular composition at the s surface $m_{i,s}$, and the transferred state mass fractions $m_{i,ts}$. These values of $m_{i,ts}$ are essential to the calculation of q_s since in Eq. (20) there appears $n_{i,s} = m_{i,ts}m$. A surface energy balance may now be constructed to yield the conductive heat flux into the ablator q_s

$$q_u = k(\partial T/\partial y)|_s + \left[\sum_i n_{i,s} h_{i,s} - \sum_i n_{i,u} h_{i,u}\right]$$
 (21)

Finally, R is calculated:

 $\Re = q_u(\text{exact numerical solution})/$

$$q_u$$
(inert injectant solution) (22)

Results

Two chemical models were postulated to describe the characteristics of phenolic-novalac ablation under Apollo re-entry conditions:

- 1) The pyrolysis gases do not react with the char as they percolate to the surface.
- 2) The pyrolysis gases are in chemical equilibrium with the char at the surface temperature. In particular "coking" reactions have occurred resulting in a deposition of carbon in the char. Table 1 gives the elemental mass fractions appropriate to the two models.

Steady-state ablation is defined as the situation where the char surface and the pyrolysis zone recede at identical rates. For chemical models I and II, the steady-state values of $\dot{m}_{\rm c}/\dot{m}_{\rm g}$ are 0.898 and 1.699, respectively. Computations were performed for $\phi = 0.1$, 0.5, and 1.0 $[\phi = (\text{actual } \dot{m}_c/\dot{m}_g)/$ (steady-state value)]. The low values of ϕ characterize the ablator behavior early in the re-entry trajectory. Table 2 presents results of the exact numerical solutions, which allow a surface energy balance to be constructed in the form given by Eq. (23). Also presented are values of $q_s(t) = k \partial T / \partial y|_s +$ $\sum_{i} j_{i,s} h_{i,s}$ and h_s from the inert injectant calculations, together with the resulting values of \mathfrak{A} . The parameters are ϕ , H_{\bullet} , p, and B_h . The enthalpies are with respect to enthalpy datum states consistent with the JANAF tables.¹⁸ Figure 3 illustrates species concentration profiles through the boundary layer.

Discussion

The Numerical Solutions

Presented in Table 2 are the surface heat transfer q_u , and the zero mass addition surface heat transfer q^* . The values of q_u , or preferably q_u/q^* may be graphed or correlated to provide engineering data. In evaluating the accuracy of such data, three sources of error may be identified: 1) the numerical solution procedure itself (as discussed already, the three-place accuracy asserted is a negligible source of error in the present context); 2) the data used to compute the thermodynamic and transport properties (complex gas mixtures at 4000-23,000°R are involved, and the transport properties, which are essentially theoretical predictions without direct experimental confirmation, must be particularly suspect); and 3) the bifurcation approximation to the \mathfrak{D}_{ii} (this error is probably no larger than the expected error in the \mathfrak{D}_{ij} diffusion coefficients themselves¹¹). With the inadequacy of the high-temperature transport property data particularly in mind, an error in q_u/q^* of between 5 and 10% is suggested.

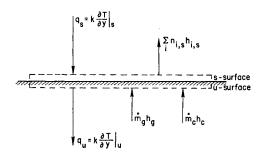


Fig. 2a Surface energy balance: absolute basis.

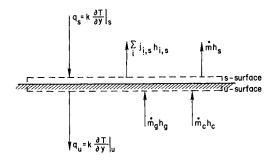


Fig. 2b Surface energy balance: convective and diffusive components.

Heat-Transfer Correlation Procedures

Numerous procedures have been proposed for the correlation of heat transfer from chemically reacting boundary-layer flows. An understanding of the essential features of any given procedure with regard to ablation calculations requires a careful study of the surface energy balance. Figures 2a and 2b illustrate the surface energy balance written in two different forms: 1) with the species fluxes in absolute terms, and 2) with the species fluxes separated into convective and diffusive components. To avoid unnecessary algebraic complexity, absorption and emission of radiation, and mechanical removal of surface material are not included in the energy balances which follow. The data and procedures of the present study are independent of these effects; their inclusion simply requires use of the appropriate form of the surface

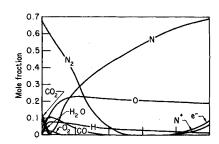


Fig. 3 Concentration profiles, Cases No. 1-I and 29-I

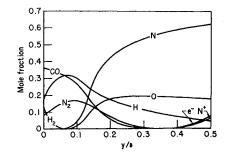


Table 2 Exact numerical solutions, inert injectant calculations, and the chemical energy recovery factor &

	85		1.101 1.068 1.144 1.237	1.144 1.306 1.262 1.219	.942 .999 1.159 1.144	1.077 1.130 1.051	1.051 1.154 1.167 1.393	.378 .140 .893 1.051	1.054 1.050 1.020 1.113	1.020 1.104 1.082 249	-2.62 2.637 .418 1.020 1.264
	^b n	Btu ft ² -s	313.0 231.3 121.2 49.2	121.2 107.4 81.2 57.5	15.9 19.5 61.5 121.2 219.0	306.5 213.4 84.8 - 4.7	84.8 63.8 41.5 26.2	2.7 24.7 84.8 116.9	300.2 190.4 63.0 -39.4	63.0 39.5 16.6	1 1 9 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	a, c, c,	Btu ft ² -s	1 2 . 4 . 5 . 0 . 5 . 0	1 3:7	1.0	- 1.3 - 6.0 - 9.0 - 13.1	0.00.0	- 2.7 - 4.0 - 7.8 - 9.0 -21.6	- 1.7 - 6.6 -10.9 -16.1	-10.9 -11.0 -11.1	- 3.4 - 5.0 - 9.6 - 10.9
	• Е д 8	Btu ft ² -s	2.2 7.0 31.7 67.3	31.7 31.8 31.6 31.8	14.2 21.0 36.3 31.7 104.1	1.4 8.5 40.2 64.4	40.2 39.3 38.5 38.1	14.4 20.7 37.9 40.2 105.6	9.8 31.8 48.9	31.8 31.4 30.5 29.9	10.5 15.3 28.8 31.8 83.1
=======================================	- _뒽 "	Btu ft ² -s	.3 1.2 27.2 72.7	27.2 28.0 28.2 29.0	13.7 21.2 35.6 27.2 103.1	.5 8.6 56.4 107.5	56.4 55.4 54.7 56.0	21.6 32.4 57.1 56.4 161.9	.6 15.2 64.9 119.2	64.9 64.4 63.1 63.0	23.0 35.0 64.4 64.9
1 Model	14	Btu ft ² -s	282.9 212.7 105.5 50.6	105.5 81.8 63.6 45.1	17.7 21.6 55.6 105.5 173.8	285.1 194.6 106.8 53.7	106.8 81.8 61.4 42.7	18.0 22.3 57.2 106.8 178.8	286.3 192.9 107.4 55.9	107.4 81.7 60.6 41.1	18.4 22.9 58.3 107.4 182.0
Chemical	q.(t)	Btu ft ² -s	311.5 228.0 120.6 60.0	120.6 107.6 81.8 58.6	16.6 21.3 21.3 64.0 120.6 227.2	306.9 219.9 110.3 52.2	110.3 89.4 67.3 53.6	12.7 16.6 52.2 110.3 195.9	301.6 202.7 107.5 47.7	107.5 84.1 60.9 45.3	12.6 15.5 50.1 107.5 188.7
	* 0'	Btu ft ² -s	312.1 314.7 309.8 307.0	309.8 241.0 179.3 116.9	68.5 96.9 217.8 309.8 689.2	311.1 310.2 301.5 300.7	301.5 232.9 170.0 108.5	66.0 93.9 212.1 301.5 675.5	311.0 304.0 297.4 296.8	297.4 228.9 165.9	64.7 91.1 208.9 297.4 668.1
		Btu	210 95 1905 3375	1905 1904 1868 1799	3608 3634 2888 1905 2605	369 1079 3906 5067	3906 3851 3752 3595	5763 5633 4742 3906 4218	407 1956 4482 5583	4482 4466 4353 4169	6063 6029 5274 4482 4787
	_ A	Btu Ib	179 174 1907 3396	1907 1961 1978 2028	3584 3620 2917 1907 2657	349 1210 3949 5020	3949 3882 3834 3921	5638 5523 4684 3949 4173	415 2134 4543 5564	4543 4511 4418 4410	5998 5966 5276 4543 4795
	€	o R	4600 4041 5018 5369	5018 5018 5013 5021	4960 5062 5197 5018 5475	4792 4974 5853 5915	5853 5833 5815 5807	5511 5592 5795 5853 6145	4844 5677 6138 6179	6138 6125 6100 6082	5771 5855 6071 6138 6437
	E _d		.109 .544 1.087 1.630	1.087 1.100 1.081 1.048	1.307 1.416 1.314 1.087 1.318	.109 .543 1.090 1.637	1.090 1.106 1.096 1.059	1.323 1.428 1.321 1.090 1.322	.109 .544 1.094 1.642	1.094 1.110 1.102 1.067	1.332 1.438 1.326 1.094 1.325
	85		1.098 1.032 .957 1.118	.957 1.029 1.122	.699 .757 .908 .957	1.073 1.046 .956	.956 1.029 1.067	.419 .319 .786 .956	1.053 1.042 1.010 1.755	1.010 1.061 1.031 1.082	113 -3.46 .604 1.010
	쥿	Btu ft ² -s	315.2 208.3 111.2 51.4	111.2 93.0 80.0 51.5	12.8 16.3 53.3 111.2 201.2	306.6 200.3 85.7 3.1	85.7 65.0 45.2 25.3	4.3 3.0 28.0 85.7 126.4	300.2 174.9 56.2 1.231	56.2 47.1 23.9 5.6	- 5.1 11.8 56.2 77.4
	o p	Btu ft ² -s	4.1 1.6 1.4 1.4	1111	- 1.3 - 2.6 - 3.0 - 7.6	- 1.4 - 6.1 -11.0 -16.4	11.11.1 11.11.1	- 3.2 - 4.8 - 9.6 -11.0 -28.1	- 2.1 - 9.1 -16.5 -36.8	-16.5 -16.5 -16.6 -16.7	- 4.8 - 7.2 -14.3 -16.5
	# B B B	Btu ft ² -s	2.3 23.4 83.5 129.3	83.5 82.0 81.3 80.4	29.2 41.9 76.5 83.5 216.1	1.8 17.5 61.2 93.8	61.2 59.7 58.3 57.9	20.6 29.9 55.4 61.2 157.9	1.3 13.8 45.1 -24.5	45.1 44.5 43.2 42.4	14.9 21.7 40.9 45.1 117.8
г.	·up s	Btu ft²-s	13.4 67.5 130.0	67.5 67.0 68.7 68.6	26.0 39.1 68.5 67.5	.4 14.2 66.2 123.0	66.2 65.2 64.5 65.7	24.2 36.6 65.8 66.2 187.9	.6 15.1 64.5 128.3	64.5 64.2 62.9 62.8	22.9 '34.8 64.2 64.5 185.4
Chemical Model	G .	Btu ft ² -s	285.2 192.8 103.7 50.5	103.7 79.0 59.0 40.9	17.0 21.0 54.6 103.7 171.5	285.8 193.1 106.6 54.1	106.6 81.1 60.3 41.4	18.0 184.2 59.0 106.6 179.1	286.5 193.5 108.4 56.8	108.4 82.4 103.1 41.4	18.6 23.2 59.0 108.4 184.2
Chemica	(†) q <u>s</u>	Btu ft ² -s	313.4 200.0 98.4 56.8	98.4 81.1 70.5 42.8	10.6 14.8 48.1 98.4 187.3	306.7 203.4 102.3 49.5	102.3 82.0 63.0 44.8	11.2 14.8 48.5 102.3 185.9	301.7 203.0 107.7 47.8	107.7 84.2 61.0 43.6	12.6 15.6 50.2 107.7 189.0
Chemical	* oʻ	Btu ft²-s	312.3 306.3 300.3 299.7	300.2 231.7 168.3 106.9	65.7 93.5 211.1 300.2 673.5	311.1 305.3 299.0 297.1	299.0 230.2 167.2 105.6	64.1 92.9 210.1 299.0 671.0	311.0 304.1 297.5 296.8	297.5 229.0 166.0 104.5	64.7 91.1 209.9 297.5 668.1
	ا ا	Btu Ib	71 1769 4730 6004	4730 4703 4591 4421	6987 6784 5685 4730 5017	309 1768 4589 5745	4589 4559 4453 4285	6461 6342 5422 4589 4856	410 1911 4451 5538	4451 4453 4353 4176	6020 5989 5228 4451 4739
	h s exact inert	Btu Ib	49 1882 4727 6070	4727 4693 4809 4807	6793 6654 5617 4727 5006	298 1985 4637 5741	4637 5563 4514 4600	6328 6238 5394 4637 4840	416 2112 4529 5992	4529 4496 4404 4397	5990 5923 5263 4529 4778
	₽	S,	4537 5449 5949 5987	5949 5935 5928 5920	5568 5652 5872 5949 6237	4770 5539 6046 6079	6046 6026 6006 6000	5669 5749 5967 6046 6334	4845 5661 6131 6173	6131 6118 6093 6075	5763 5848 6065 6131 6430
	a _r	·	.109 .544 1.091	1.091 1.107 1.099 1.062	1.325 1.430 1.322 1.091 1.322	.109 .544 1.093 1.640	1.093 1.108 1.100 1.064	1.328 1.434 1.322 1.093 1.324	.109 .544 1.094 1.642	1.094 1.110 1.102 1.067	1.332 1.437 1.326 1.094 1.325
Ĭ	Д	atm	1.00	1.00	.05	1.00	 	.05 .10 .50 1.00	1:00	1.00	.10 .10 1.00 5.00
	ж [©]	मुन	25000	25000 20000 15000 10000	25000	25000	25000 20000 15000 10000	25000	25000	25000 20000 15000 10000	25000
	•		9	d: : :	9::::	.50			1.00	1.00	1:00
	Ř.		4007	8 4 6 5	9 11 13 13	14 15 17	18 20 21	22 24 28 26 26	30 58 57 30 58 54	31 33 34	35 36 38 39

energy balance. The two equations representing the energy balances depicted in Figs. 2a and 2b are, respectively

$$q_u = k(\partial T/\partial y)|_{s} - \sum_{i} n_{i,s} h_{i,s} + \dot{m}_{g} h_{g} + \dot{m}_{e} h_{e} \qquad (23)$$

$$q_u = k(\partial T/\partial y)|_s - \sum_i j_{i,s} h_{i,s} - \dot{m} h_s + \dot{m}_o h_o + \dot{m}_c h_c$$
 (24)

where Eq. (24) may be obtained from Eq. (23) by substituting the relations

$$n_{i,s} = \dot{m}m_{i,s} + j_{i,s}; \quad h_s = \sum_i m_{i,s}h_{i,s}$$

and q_u is the conductive heat flux into the heat shield. These equations are exact within the assumptions implied by the over-all problem statement. Most correlation procedures evolve from the form of Eq. (24) which obtains under the unity Lewis number assumption, namely

$$q_u = (k/C_p)(\partial h/\partial y)|_s - \dot{m}h_s + \dot{m}_g h_g + \dot{m}_c h_c \qquad (25)$$

If, in addition, the effect of viscous dissipation is simplified by assuming a unity Prandtl number (or alternatively if attention is restricted to stagnation point flow), and if the $\rho\mu$ product is constant across the boundary layer, then we have the exact result⁴ that the appropriate driving force in a heat transfer correlation is the total enthalpy difference. Thus we write Eq. (25) as

$$q_u = g_h(H_e - h_s) - \dot{m}h_s + \dot{m}_g h_g + \dot{m}_e h_c$$
 (26)

where g_h is the heat-transfer conductance $(g_h = \rho_e u_e St_h)$ where St_h is the heat-transfer Stanton number). Comparison of Eqs. (24) and (26) shows that, in the general situation of

Table 3 Data from an inert injectant calculation with prescribed \dot{m}_c

		Chemical model I				Chemical model II			
Case No.	T_s , ${}^{\circ}\mathrm{R}$	h _s , Btu	$q_s^{(t)}$, Btu ft²-8	R	T_s , ${}^{\circ}\mathrm{R}$	$rac{h_s,}{ ext{Btu}}$	$\frac{q_s(t)}{\text{Btu}}$	R	
1	4542	74	285.3	1.098	4615	211	283.1	1.100	
2	5627	2057	192.5	1.044	4040	144	194.4	1.169	
3	5945	4709	104.2	0.948	4990	1838	106.7	1.119	
4	4962	5929	51.0	1.058	5316	3226	51.5	1.107	
5	5945	4709	104.2	0.948	4990	1838	106.7	1.119	
6	5946	4726	79.6	1.022	4989	1834	82.8	1.279	
7	5943	4627	59.5	1.117	4958	1755	64.4	1.212	
8	5938	4468	41.1	0.943	4884	1581	45.9	1.122	
9	5542	6867	17.2	0.673	4913	3377	18.0	0.876	
10	5624	6685	21.2	0.727	5013	3421	22.0	0.916	
11	5853	5622	55.0	0.886	5131	2698	56.4	1.088	
12	5945	4709	104.2	0.948	4990	1838	106.7	1.119	
13	6217	4970	172.7	1.070	5380	2431	176.5	1.23	
14	4764	312	286.1	1.072	4792	371	285.6	1.07	
15	5703	2102	194.3	1.052	5177	133	196.2	1.130	
16	6035	4538	108.5	0.919	5840	3829	109.8	0.986	
17	6053	5677	55.7	0.341	5888	4962	56.2	-3.393	
18	6035	4538	108.5	0.919	5840	3829	109.8	0.986	
19	6036	4564	82.8	0.989	5842	3854	84.1	1.08	
20	6034	4515	51.6	1.033	5839	3809	63.1	1.10	
21	6028	4349	42.1	0.965	5825	3622	43.8	1.26	
22	5630	6320	18.4	0.379	5473	5585	18.7	0.31	
23	5717	6232	22.9	0.283	5729	5487	23.2	0.11	
24	5943	5346	58.7	0.724	5772	4627	59.2	0.76	
25	6035	4538	108.5	0.919	5840	3829	109.8	0.98	
26	6314	4802	183.1	1.010	6122	4118	185.1	1.08	
27	4843	415	287.0	1.051	4843	415	287.0	1.05	
28	5771	2116	195.4	1.040	5793	2159	195.3	1.04	
29	6124	4401	111.3	1.140	6132	4423	111.3	0.92	
30	6143	5468	59.2	2.743	6149	5483	59.3	1.52	
31	6124	4401	111.3	1.140	6132	4423	111.3	0.92	
32	6126	4442	84.7	0.974	6133	4457	84.7	0.96	
33	6125	4411	62.8	0.936	6132	4425	62.8	0.90	
34	6119	4274	42.4	0.918	6039	5149	61.0	0.28	
35	5716	5880	19.3	-0.045	5722	5886	19.3	-0.87	
36	5805	5865	24.1	-1.122	5811	5874	24.1	74.14	
37	6033	5136	61.0	0.504	6039	5149	61.0	0.28	
38	6124	4401	111.3	1.140	6132	4423	111.3	0.92	
39	6409	4677	190.4	0.938	6416	4692	190.5	0.91	

 $Le_i \neq 1$, this conductance must be defined as⁸

$$g_h \equiv \left[k(\partial T/\partial y) |_{s} - \sum_{i} j_{i,s} h_{i,s} \right] / (H_{s} - h_{s}) \equiv q_{s}^{(t)} / (H_{s} - h_{s}) \quad (27)$$

i.e., the conductance is based on the total energy flux relative to the mass average velocity $q_*^{(i)}$.

In order to provide the basis for alternative correlation procedures we now follow Lees⁴ and rearrange Eq. (26) by subtracting and adding the term $\sum m_{i,s}h_{i,s}$ to obtain

$$q_{u} = g_{h} \Big(H_{\bullet} - \sum_{i} m_{i,\bullet} h_{i,s} \Big) + \sum_{i} g_{h} (m_{i,\bullet} - m_{i,s}) h_{i,s} - \dot{m} h_{s} + \dot{m}_{g} h_{g} + \dot{m}_{c} h_{c}$$
(28)

Introducing the notation $h_{es} = \sum m_{i,e}h_{i,s}$, the enthalpy of a mixture of freestream composition but at the surface temperature, and noting that for $Le_i = 1$, $g_h = g_{m,i}$, Eq. (28) becomes

$$q_{u} = g_{h}(H_{s} - h_{ss}) + \sum_{i} g_{m,i}(m_{i,s} - m_{i,s})h_{i,s} - \dot{m}h_{s} + \dot{m}_{g}h_{g} + \dot{m}_{c}h_{c}$$
(29)

If we now define the mass transfer conductances as $g_{m,i} = j_{i,s}/(m_{i,s} - m_{i,s})$ even for $Le_i \neq 1$ and with gas phase reactions, then comparison of Eqs. (29) and (24) shows that

$$k(\partial T/\partial y)|_{s} = g_{h}(H_{e} - h_{es}) \tag{30}$$

We now make two observations:

- 1) The separation of the conductive and interdiffusion contributions in Eq. (29) is exact even for a chemically reacting flow with $Le_i \neq 1$, provided that values of the conductances are obtained from an exact numerical solution. It is only when empiricism is introduced via the use of, for example, Reynolds analogy type correlations for the heat- and masstransfer conductances, that the separation becomes inexact.
- 2) The energy flux across the s surface of direct concern is not the sum of the conduction and interdiffusion fluxes $q_s^{(t)}$ (termed the energy supplied by convection by Bartlett et al.8) but the conduction flux only. This is best seen from Eq. (23) which may be rewritten as

$$q_u = k(\partial T/\partial y)|_s + \left[\sum_i n_{i,s} h_{i,s} - \sum_i n_{i,u} h_{i,u}\right]$$
(31)

The bracketed term is the energy absorbed or released at the surface due to chemical reaction or phase change. For example, for transpiration cooling with an inert gas, this term would be identically zero.

Thus, there is a definite merit to the idea of attempting to provide separate correlations for the conduction and diffusion components of $q_s^{(t)}$ in the form of the conductances g_h and $g_{m,i}$ defined by Eq. (29). Unfortunately the latter tend to behave anomalously when species are produced or consumed within the boundary layer; for a specific application an adequate correlation of the numerical data for $g_{m,i}$ proves complex and tedious. Since chemical equilibrium is assumed in the present application there is the alternative possibility of correlating elemental mass transfer conductances $g_{m,(\alpha)}$; but a loss in generality of the over-all procedure would be thereby incurred. In this light the decision of Bartlett et al.,8 to correlate the total flux $q_s(t)$ is understandable despite a number of objections which can be raised. Firstly, a separate correlation of h_s must still be provided in order to reconstruct the surface energy balance, Eq. (26). Secondly, the numerical value of $q_s^{(t)}$ is dependent on the chosen enthalpy datum state. Thus, engineering calculations based on such correlations must employ the identical datum state. Also, direct comparison cannot be made with energy fluxes that have absolute values such as q_s * and radiative transfer.

The choice of a correlation procedure depends on the manner in which the correlations are intended for use. Thus, Bartlett et al., present detailed instructions for the use of

their correlations in the engineering calculation of steadystate ablation, and they refer to a more general form of this engineering calculation intended for application to transient ablation. We have developed, and used extensively, a method for calculating the transient response of a charring ablator along a re-entry trajectory. The essential element of this method is the addition of an open system surface chemical state computation at all (or selected) time steps of a conventional finite difference solution for the in-depth response of the ablator. The solution proceeds as follows:

1) T_s , \dot{m}_g , and the $g_{m,i}$ are obtained from the previous time step; 2) with the known $m_{(\alpha)g,i}$ and $m_{(\alpha),s}$, an open system surface chemical state computation yields \dot{m}_c and $m_{i,s}$; 3) the current value of q_s^* is calculated by a standard aerodynamic heating routine; 4) Eqs. (16–20) are used to obtain $m_{i,ts}$, q_s , and new values of $g_{m,i}$; 5) a surface energy balance is performed to yield q_u ; and 6) with this value of q_u the finite-difference calculation of the in-depth response of the ablator yields new values of T_s and \dot{m}_g .

Addition of the surface chemistry computation to the calculation method provides a theoretical prediction of \dot{m}_c , a precise surface energy balance, and the values of $m_{i,ls}$ required to incorporate adequate heat and mass transfer correlations. The increase in computer time has proven to be less than 10% for the calculation of heat shield response along a re-entry trajectory.

The only significant assumption in the foregoing calculation method is that all the ablation product reactions take place at the surface of the ablator. The error incurred by making this assumption is negligible in many applications; thus the calculation method may be often used without further modification. The data obtained in the present study allow the method to be refined by introducing a correction for the effect of gas-phase reactions involving the ablation products. The conductive heat flux into the heat shield q_u determined in step 5 need be simply multiplied by R to recover the exact numerical solution. Also, as mentioned above, surface radiation and mechanical removal of surface material, may be accounted for by writing an appropriate form for the surface energy balance. The accuracy of the final result then depends only on the adequacy of correlations or tabulated data of R generated for the specific ablator. Since R usually is near unity, it is not difficult to insure that the corrected value of q_u is within a stipulated error limit.

In correlating our data in terms of \Re we are, therefore, both isolating the effect of gas-phase chemical reactions and providing a simple correction factor for use in an engineering calculation. Also, in basing our procedure on q_u , we are able to provide data which are independent of choice of enthalpy datum state. Of course \Re also corrects for errors introduced through the empirical inert injectant heat and mass transfer correlations; this is a desirable feature when used in an engineering calculation. On the other hand, this feature precludes an evaluation of the effects of gas phase chemical reactions in situations where \Re \approx 1 or where q_u is relatively low.

An Alternative Definition of ®

The previous section stressed that our choice of correlation procedure was strongly influenced by the requirement that resulting data be in a form convenient for engineering calculations. In such a calculation \dot{m}_{σ} and T_s are determined by the finite-difference solution for the in-depth response of the ablator and may be prescribed for the surface state chemistry at the next time step. It was for this reason that inert injectant calculations corresponding to exact numerical solutions were obtained by matching values of \dot{m}_{σ} and T_s ; the equilibrium surface chemical state computation then yielded the resulting values of \dot{m}_c . However, it is also possible to specify \dot{m}_{σ} and \dot{m}_c in the chemical state computation; a T_s then results from the equilibrium chemistry requirement. Values of Ω calculated following this latter ap-

proach are presented in Table 3 for chemical models I and II respectively. These values of $\mathfrak R$ are not too useful for engineering purposes but do throw additional light on the effects of gas-phase chemical reactions.

Trends Exhibited by ®

In discussing the trends exhibited by \Re in Table 2 it is convenient first to dispose of the anomalies which can be attributed to errors introduced by the inert injectant heat and mass transfer correlations, or by loss of accuracy in the over-all approach. We make the following observations:

- 1) At small B_h (Cases 1-I, 14-I, 27-I, 1-II, 14-II, 27-II) $1.05 \le \Re \le 1.10$. Values much closer to unity would be expected owing to the relatively small quantity of ablation products being added to the boundary layer. It can be seen that for these cases \mathcal{R} essentially mirrors the behavior of $q_s^{(t)}$. Also, comparison of the data in Tables 2 and 3 shows that matching \dot{m}_c instead of T_s yields almost identical results. The anomaly results from a deficiency in the inert injectant heat transfer correlation at low injection rates when H and H₂ are present. For example, in Case 1-I the exact numerical value of $q_s^{(t)}$ is actually a little higher than q_s^* , even though $B_h = 0.109$. This is due to the increased mixture thermal conductivity, near the surface, which accompanies appreciable mole fractions of low molecular weight chemical species such as H and H₂. The exponential form of the inert injectant heat transfer correlation, Eq. (19), and the associated empirical constants were chosen to yield adequate predictions over a wide range of B_h and chemical species. It proved infeasible to substantially improve the correlation in this
- 2) When $q_u \ll q_s^*$ or mh_s , errors inherent in both the heat and mass transfer correlations are greatly magnified. The fact that q_u legitimately can become negative compounds the problem. Such situations occur when B_h is large and when H_e and p are small. Cases 35-II and 36-II are the most dramatic examples of this behavior. Again the data in Table 3 shows that whether T_s or m_e is matched with the exact solution has little effect on $q_s^{(e)}$. Fortunately, if q_u is small at any time along a re-entry trajectory, its exact value is unimportant. Under such circumstances either ablation is negligible, or the surface energy balance is dominated by radiation absorption.
- 3) When q_u is relatively small due to a large B_h , the heat and mass transfer correlations are particularly suspect. The correlations tend to be more accurate for the midrange of B_h values; the graphs presented by Gomez et al., suggest that it is not possible to obtain simple correlations which are accurate at large values of B_h .
- 4) For large ϕ and appreciable B_h , a comparison of the data in Tables 2 and 3 shows that whether choice of T_s or \dot{m}_c for matching with the exact solution does have a significant effect on \mathfrak{R} . Under these circumstances an inert injectant calculation cannot be precisely matched with an exact numerical solution, and \mathfrak{R} will not be a reliable indicator of the effect of gas-phase reactions.

With these sources of anomalous behavior accounted for, our preliminary assessment of the behavior of \mathfrak{R} as a function of ϕ , B_h , H_e , and p, is as follows:

An increase in ϕ is most simply viewed as an increase of the fraction of char products in the total ablation products. The surface temperatures associated with appreciable char removal are high and result in char products which do not further dissociate in the boundary layer. Thus, the char products should have little direct effect on \mathfrak{R} . We cannot discern a significant trend in the data. In this context it is pertinent to note that the chemical domain of most significance to Apollo re-entry is located in the lower left hand quadrant of a graph with ordinate ϕ and percent coking as abscissa. Within the error limits imposed by the anomalous behavior just discussed, there is no discernible effect of B_h on \mathfrak{R} .

Since T_a is nearly constant for the data presented, a decrease in H_{ϵ} reduces the sensible enthalpy driving force available for conductive energy transport, and heat absorption or release due to gas-phase chemical reactions becomes relatively more significant; \Re shows a tendency to exceed unity as H_{\bullet} decreases, thereby indicating that the dominant gas-phase reactions are indeed endothermic dissociations. Referring to the analysis of Cohen et al.,22 we suggest that, under these circumstances, nonunity Lewis numbers strongly influence the behavior of R.

The data for \Re at p = 0.05 and 0.10 atm are clearly too imprecise to yield useful information. However, the high wall enthalpies h, at these pressures indicate a high degree of dissociation of the ablation products. Thus, the inert injectant calculation should be quite reliable in this situation. There is a definite tendency for \Re to exceed unity as p increases to 5 atm. This again confirms that the dominant gas-phase reactions are endothermic dissociations; at higher pressures the dissociations take place at higher temperatures and are therefore located further into the boundary layer.

Figure 3 shows concentration profiles for two situations: top) a relatively low T_s of 4537°R, where dissociation of H₂O and CO₂ occurs, and bottom) the more typical T_s of 6131°R, where the dominant ablation product reaction is dissociation of H_2 .

Summary

- 1) The effect on surface heat transfer of gas phase chemical reactions involving ablation products can be isolated in the chemical energy recovery factor R.
- 2) For Apollo re-entry conditions $\Re \simeq 1$, hence surface heat transfer can be calculated accurately by assuming the species entering the boundary layer to be inert.
- 3) An engineering ablation prediction procedure has been developed; its essential element is the addition of an opensystem, surface-equilibrium chemical state computation at selected time steps of a conventional finite-difference solution for the in-depth response of the ablator.

References

- ¹ Kendall, R. M., Bartlett, E. P., Rindal, R. A., and Moyer, C. B., "An Analysis of the Coupled Chemically Reacting Boundary Layer and Charring Ablator," CR 1060, 1968, NASA.
- ² Anfimov, N. A., "Heat and Mass Transfer Near the Stagnation Point with Injection and Suction of Various Gases Through the Body Surface," Mekhanika Zhidkosti I Gaza, Vol. 1, 1966, pp. 22-31.
- ³ Gomez, A. V., Mills, A. F., and Curry, D. M., "Correlations of Heat and Mass Transfer for the Stagnation Region of a Re-

- entry Vehicle with Multicomponent Mass Addition," Space Systems and Thermal Technology for the 70's Part II, ASME, June
- ⁴ Lees, L., "Convective Heat Transfer with Mass Addition and Chemical Reactions," Third AGARD Colloquium on Combustion and Propulsion, Pergamon Press, New York, 1959.
- ⁵ Spalding, D. B., Convective Mass Transfer, McGraw-Hill, New York, 1963.
- ⁶ Rosner, D. E., "Similtude Treatment of Hypersonic Stagnation Heat Transfer," ARS Journal, Vol. 29, 1959, pp. 215–216.

 ⁷ Kendall, R. M., Rindal, R. A., and Bartlett, E. P., "Thermo-
- chemical Ablation," AIAA Paper 65-642, Monterey, Calif., 1965.

 ⁸ Bartlett, E. P., Nicolet, W. E., and Howe, J. T., "Heat-Shield Ablation at Superorbital Re-entry Velocities," AIAA Paper 70-202, New York, 1970.
- ⁹ Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids, 2nd ed., John Wiley, New York, 1964.
- ¹⁰ Bird, R. B., "Diffusion in Multicomponent Gas Mixtures,"
- Kagaku Kogaku, Vol. 26, 1962, pp. 718–721.

 11 Kendall, R. M., Rindal, R. A., and Bartlett, E. P., "A Multicomponent Boundary-Layer Chemically Coupled to an Ablating Surface," AIAA Journal, Vol. 5, No. 6, June 1967, pp. 1063-1071.
- ¹² Bartlett, E. P., Kendall, R. M., and Rindal, R. A., "A Unified Approximation for Mixture Transport Properties for Multicomponent Boundary-Layer Applications," CR 1063, 1968, NASA.
- ¹³ Spalding, D. B., "A Standard Formulation of the Steady Convective Mass Transfer Problem," International Journal of Heat and Mass Transfer, Vol. 1, 1960, pp. 192-207.
- 14 Svehla, R. A., "Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures," TR R-132, 1962, NASA.
- 15 Hochstim, A. R., "Equilibrium Compositions, Thermodynamics and Normal Shock Properties of Air with Additives," Vol. 1, Zph-122, 1961, General Dynamics-Convair.
- 16 Wilke, C. R., "A Viscosity Equation for Gas Mixtures,"
- The Journal of Chemical Physics, Vol. 18, 1950, pp. 517–519.

 The Mason, E. A., and Saxena, S. C., "Approximate Formula for the Thermal Conductivity of Gas Mixtures," The Physics of Fluids, Vol. 1, 1958, pp. 361-369.
- ¹⁸ Dergazarian, E. T. et al., JANAF Thermochemical Tables, Dec. 1960 and supplements to date, Thermal Lab., The Dow Chemical Co., Midland, Mich.
- 19 Duff, R. E., and Bauer, S. H., "Equilibrium Composition of the C/H System at Elevated Temperatures," The Journal of Chemical Physics, Vol. 26, 1962, pp. 1754-1767.
- 20 Kendall, R. M., and Bartlett, A. P., "Nonsimilar Solution of the Multicomponent Laminar Boundary Layer by an Integral-Matrix Method," AIAA Journal, Vol. 6, No. 6, June 1968, pp. 1089-1097.
- ²¹ Kendall, R. M., "A General Approach to the Thermochemical Solution of Mixed Equilibrium-Nonequilibrium, Homogeneous or Heterogeneous Systems," CR 1064, 1968, NASA.
- ²² Cohen, C. B., Bromberg, R., and Lipkis, R. P., "Boundary Layers with Chemical Reactions due to Mass Addition," Jet Propulsion, Vol. 28, 1958, pp. 659-668.